博客
关于我
准确率评价指标
阅读量:258 次
发布时间:2019-03-01

本文共 1013 字,大约阅读时间需要 3 分钟。

一、top1和top5

在分类任务中,top1和top5是两种常见的预测方式:

top1-即为预测的label取最后概率向量中最大的一个作为预测结果。如果正确分类,则预测正确;否则预测错误。

top5-则是最后概率向量中最大的前五名,只要包含正确的label即为预测正确;若正确label不在前五名,则预测错误。

二、Precision、Recall和Accuracy

2.1 Precision和Recall

在信息检索场景中,系统返回查询结果会出现以下几种情况:

1. **True Positive (TP)**:系统正确识别了用户需求的相关结果。

2. **False Positive (FP)**:系统误将无关结果归类为相关。

3. **False Negative (FN)**:系统漏掉了正确的相关结果。

4. **Gray Area**:系统识别出的结果本身就是无关内容。

precision(精确率)衡量系统返回的结果中有多少是正确的,即TP/(TP+FP)。Recall(召回率)则衡量系统返回的结果中有多少是相关的,即TP/(TP+FN)。两个指标相辅相成,单独提升一项可能导致另一项下降。

为什么不用准确率(accuracy)?因为准确率在样本不平衡时容易受到偏差。在大部分信息检索任务中,大部分结果都是无关的,使用准确率会导致结果失真。

2.2 为什么不用准确率(accuracy)

准确率的计算公式为:(TP + TN)/N,其中N为总样本数。虽然在平衡样本下准确率有用,但在实际应用中数据通常不平衡,导致准确率容易被误导。例如,在信息检索中,大部分结果无关,系统更倾向于优化召回率和精确率的平衡。

二、mAP(mean average precision)

在多标签分类任务中,mAP(mean average precision)是评估模型性能的常用指标。与单标签分类的accuracy不同,mAP考虑了多个标签的检测结果。

mAP的计算步骤如下:

1. 使用训练好的模型生成所有测试样本的confidence score,并记录每个样本的ground truth标签。

2. 按照confidence score对结果进行排序。

3. 计算每个类别的precision和recall,并取平均值。

mAP不仅考虑了每个样本的分类结果,还综合了所有类别的性能评估,适合多标签场景下的性能衡量。

转载地址:http://uctx.baihongyu.com/

你可能感兴趣的文章
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy学习笔记3-array切片
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>